Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Ecotoxicol Environ Saf ; 273: 116134, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387143

RESUMO

The leaching of additives from plastics and elastomers (rubbers) has raised concerns due to their potential negative impacts on the environment and the development of antibiotic resistance. In this study, we investigated the effects of chemicals extracted from two types of rubber on microbiomes derived from a benthic sea urchin and two pelagic fish species. Additionally, we examined whether bacterial communities preconditioned with rubber-associated chemicals displayed adaptations to antibiotics. At the highest tested concentrations of chemicals, we observed reduced maximum growth rates and yields, prolonged lag phases, and increased alpha diversity. While the effects on alpha and beta diversity were not always conclusive, several bacterial genera were significantly influenced by chemicals from the two rubber sources. Subsequent exposure of sea urchin microbiomes preconditioned with rubber chemicals to the antibiotic ciprofloxacin resulted in decreased maximum growth rates. This indicates a more sensitive microbiome to ciprofloxacin when preconditioned with rubber chemicals. Although no significant interaction effects between rubber chemicals and ciprofloxacin exposure were observed in bacterial alpha and beta diversity, we observed log-fold changes in two bacterial genera in response to ciprofloxacin exposure. These findings highlight the structural and functional alterations in microbiomes originating from various marine species when exposed to rubber-associated chemicals and underscore the potential risks posed to marine life.


Assuntos
Microbiota , Borracha , Animais , Antibacterianos/toxicidade , Plásticos , Ciprofloxacina/toxicidade
2.
Mar Genomics ; 65: 100981, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35969942

RESUMO

Arctic and sub-arctic pelagic organisms can be exposed to effluents and spills from offshore petroleum-related activities and thus it is important to understand how they respond to crude oil related contaminants such as polycyclic aromatic hydrocarbons (PAHs). The copepod species Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus represent key links in the arctic marine food web. We performed a transcriptome analysis of the three species exposed to phenanthrene (Phe) and benzo[a]pyrene (BaP) representing low and high molecular weight PAHs, respectively. Differential expression of several genes involved in many cellular pathways was observed after 72 h exposure to Phe (0.1 µM) and BaP (0.1 µM). In C. finmarchicus and C. glacialis, the exposure resulted in up-regulation of genes encoding enzymes in xenobiotic biotransformation, particularly the phase II cytosolic sulfonation system that include 3'-phosphoadenosine 5'-phosphosulfate synthase (PAPSS) and sulfotransferases (SULTs). The sulfonation pathway genes were more strongly induced by BaP than Phe in C. finmarchicus and C. glacialis but were not affected in C. hyperboreus. However, a larger number of genes and pathways were modulated in C. hyperboreus by the PAHs including genes encoding xenobiotic biotransformation and lipid metabolism enzymes, suggesting stronger responses in this species. The results suggest that the cytosolic sulfonation is a major phase II conjugation pathway for PAHs in C. finmarchicus and C. glacialis. Some of the biotransformation systems affected are known to be involved in metabolism of endogenous compounds such as ecdysteroids, which may suggest potential interference with physiological and developmental processes of the copepod species.


Assuntos
Copépodes , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidade , Copépodes/genética , Copépodes/metabolismo , Fenantrenos/metabolismo , Fenantrenos/toxicidade , Transcriptoma , Poluentes Químicos da Água/toxicidade , Xenobióticos
3.
Environ Toxicol Chem ; 41(10): 2466-2478, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35860956

RESUMO

Herring gulls (Larus argentatus) are opportunistic feeders, resulting in contaminant exposure depending on area and habitat. We compared contaminant concentrations and dietary markers between two herring gull breeding colonies with different distances to extensive human activity and presumed contaminant exposure from the local marine diet. Furthermore, we investigated the integrity of DNA in white blood cells and sensitivity to oxidative stress. We analyzed blood from 15 herring gulls from each colony-the urban Oslofjord near the Norwegian capital Oslo in the temperate region and the remote Hornøya island in northern Norway, on the Barents Sea coast. Based on d13 C and d34 S, the dietary sources of urban gulls differed, with some individuals having a marine and others a more terrestrial dietary signal. All remote gulls had a marine dietary signal and higher relative trophic level than the urban marine feeding gulls. Concentrations (mean ± standard deviation [SD]) of most persistent organic pollutants, such as polychlorinated biphenyl ethers (PCBs) and perfluorooctane sulfonic acid (PFOS), were higher in urban marine (PCB153 17 ± 17 ng/g wet weight, PFOS 25 ± 21 ng/g wet wt) than urban terrestrial feeders (PCB153 3.7 ± 2.4 ng/g wet wt, PFOS 6.7 ± 10 ng/g wet wt). Despite feeding at a higher trophic level (d15 N), the remote gulls (PCB153 17 ± 1221 ng/g wet wt, PFOS 19 ± 1421 ng/g wet wt) were similar to the urban marine feeders. Cyclic volatile methyl siloxanes were detected in only a few gulls, except for decamethylcyclopentasiloxane in the urban colony, which was found in 12 of 13 gulls. Only hexachlorobenzene was present in higher concentrations in the remote (2.6 ± 0.42 ng/g wet wt) compared with the urban colony (0.34 ± 0.33 ng/g wet wt). Baseline and induced DNA damage (doublestreak breaks) was higher in urban than in remote gulls for both terrestrial and marine feeders. Environ Toxicol Chem 2022;41:2466-2478. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Charadriiformes , Bifenilos Policlorados , Ácidos Alcanossulfônicos , Animais , Cruzamento , Dano ao DNA , Monitoramento Ambiental/métodos , Fluorocarbonos , Hexaclorobenzeno , Humanos , Poluentes Orgânicos Persistentes , Bifenilos Policlorados/análise , Siloxanas
4.
Environ Toxicol Chem ; 40(9): 2538-2546, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34133786

RESUMO

Traditional ecotoxicology methods involving copepods have focused on exposure of pooled individuals and averaged responses, but there is increasing awareness of the importance of individual variation. Many biological traits are density dependent, and decisions to use single-individual or pooled exposure may affect responses to anthropogenic stressors. We investigated how conspecific density as a biotic stressor affects behavioral and respiratory responses to copper (Cu) exposure in the coastal copepod Tigriopus brevicornis. Adults were incubated at densities of 1, 2, or 4 individuals per replicate in 3.2 mL of exposure medium (23 µg Cu L-1 or control). Our results show an interaction of Cu exposure and density on respiration. The Cu exposure increased respiration, but this effect diminished with increasing density. We also found reduced swimming activity with increasing density. We propose 2 nonexclusive alternative explanations for the density-dependent respiratory increase of Cu exposure: 1) a behavioral stress response to low conspecific density, or 2) increased Cu exposure due to increased swimming activity. We emphasize the importance of considering density-dependency in responses when designing and interpreting ecotoxicology studies. Environ Toxicol Chem 2021;40:2538-2546. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Ecotoxicologia , Humanos , Natação , Poluentes Químicos da Água/toxicidade
5.
Environ Toxicol Chem ; 39(9): 1765-1773, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32557750

RESUMO

Natural biotic and anthropogenic stressors can interact to alter contaminant toxicity. Energetic restrictions are potential mechanisms causing this pattern. To identify processes underlying observed effects of predation risk and copper (Cu) on delayed copepod age at maturity, we examined how these 2 stressors affect respiration rates. We tested 2 very different copepod species: the large, pelagic calanoid Calanus finmarchicus and the small, semibenthic harpacticoid Tigriopus brevicornis. Adult individuals were exposed for 12 h to the treatments: predation risk, Cu (23 µg L-1 ), combined predation risk and Cu (23 µg L-1 ), or control. Oxygen concentrations were monitored continuously. The 2 species differed in their responses. We found no clear effects of either stressor in C. finmarchicus. In T. brevicornis, predation risk increased respiration rates, whereas Cu alone had little impact. In contrast, combined exposure to predation risk and Cu interacted to reduce respiration rates to less than expected. We further observed an effect of sex because female-biased T. brevicornis replicates were more sensitive to both predation risk (increased respiration rates) and Cu exposure (reduced respiration rates). The present study provides further evidence that predation risk can interact with copepod responses toward Cu exposure. Interactive effects of biotic stressors ought to be considered to improve future marine environmental monitoring. Environ Toxicol Chem 2020;39:1765-1773. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Copépodes/efeitos dos fármacos , Cobre/toxicidade , Comportamento Predatório/efeitos dos fármacos , Taxa Respiratória/efeitos dos fármacos , Animais , Feminino , Masculino , Fatores de Risco , Rotação , Razão de Masculinidade , Fatores de Tempo , Poluentes Químicos da Água/toxicidade
6.
Environ Sci Technol ; 53(21): 12835-12845, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31589028

RESUMO

Arctic-breeding seabirds contain high levels of many anthropogenic contaminants, which they deposit through guano to the tundra near their colonies. Nutrient-rich soil in vicinity to seabird colonies are favorable habitats for soil invertebrates, such as springtails (Collembola), which may result in exposure to seabird-derived contaminants. We quantified a wide range of lipid-soluble and protein-associated environmental contaminants in two springtail species (Megaphorura arctica and Hypogastrura viatica) and their respective habitats (soil/moss) collected underneath seabird cliffs. Although springtails are commonly used in laboratory toxicity tests, this is the first study to measure concentrations of persistent organic pollutants (POPs) and mercury (Hg) in springtails from the field, and to study biotransportation of contaminants by seabirds to soil fauna. We categorized the sites a priori as of low, medium, or high seabird influence, based on the seabird abundance and species composition. This ranking was reflected in increasing δ15N values in soil/moss and springtails with increasing seabird influence. We found clear indications of seabirds impacting the terrestrial soil environments with organic contaminants, and that concentrations were higher in soil and moss close to the bird cliff, compared to farther away. However, we did not find a relationship between contaminant concentration in springtails and the concentrations in soil/moss, or with level of seabird influence. Our study indicates a low uptake of contaminants in the soil fauna, despite seabird-derived contamination of their habitat.


Assuntos
Artrópodes , Solo , Animais , Regiões Árticas , Monitoramento Ambiental , Tundra
7.
Environ Toxicol Chem ; 38(10): 2224-2232, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31343775

RESUMO

Copper (Cu) is an essential trace metal, but may also be toxic to aquatic organisms. Although many studies have investigated the cytotoxicity of Cu, little is known about the in vivo genotoxic potential of Cu in marine invertebrates. We investigated the genotoxicity of Cu in 2 pelagic calanoid copepods, Acartia tonsa and Temora longicornis, and the intertidal harpacticoid copepod Tigriopus brevicornis by exposing them for 6 and 72 h to waterborne Cu (0, 6, and 60 µg Cu/L). A subsequent 24-h period in filtered seawater was used to investigate delayed effects or recovery. Genotoxicity was evaluated as DNA strand breaks in individual copepods using the comet assay. Copper did not increase DNA strand breaks in any of the species at any concentration or time point. The treatment did, however, cause 100% mortality in A. tonsa following exposure to 60 µg Cu/L. Acartia tonsa and T. longicornis were more susceptible to Cu-induced mortality than the benthic harpacticoid T. brevicornis, which appeared to be unaffected by the treatments. The results show major differences in Cu susceptibility among the 3 copepods and also that acute toxicity of Cu to A. tonsa is not directly associated with genotoxicity. We also show that the comet assay can be used to quantify genotoxicity in individual copepods. Environ Toxicol Chem 2019;38:2224-2232. © 2019 SETAC.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Copépodes/efeitos dos fármacos , Cobre/toxicidade , Mutagênicos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Dano ao DNA , Peróxido de Hidrogênio/toxicidade
8.
Integr Environ Assess Manag ; 15(4): 575-583, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30790447

RESUMO

Marine tailings disposal from mineral production is expected to have an environmental impact. In this case study we use a discharge of limestone processing tailings to a Norwegian fjord to describe an adaptive management process. The aim of the paper is to describe the development of an environmental adaptive management system (EAMS), contrasted with management simply based on the quantity of the discharge. The main driver for developing a new management system for the submarine tailings deposits was a desire to establish a system based on what was perceived as important to all stakeholders, that is, environmental impact. Involvement of stakeholders is essential, and a resource group with members from fisheries, local interest organizations, scientists, independent experts, and managers from the mining company jointly defined common sets of acceptance criteria to evaluate impact. Introduction of an EAMS has resulted in a change in the company's view of the impact their activity has on the environment and in an increased willingness to initiate monitoring and research to reduce knowledge gaps and uncertainty and impact on the marine environment. Environmental adaptive management has facilitated the development of a more ecologically relevant, integrated, and focused submarine tailings deposits management. Integr Environ Assess Manag 2019;15:575-583. © 2019 SETAC.


Assuntos
Conservação dos Recursos Hídricos/métodos , Resíduos Industriais/efeitos adversos , Mineração , Poluição Química da Água/efeitos adversos , Estuários , Noruega
9.
Mar Environ Res ; 145: 39-51, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30803754

RESUMO

The aim of this study was to assess whether fish in Kollevåg, a sheltered bay on the western coast of Norway, previously utilized as a waste disposal site, could be affected by environmental contaminants leaking from the waste. Farmed, juvenile Atlantic cod (Gadus morhua) were caged for six weeks at three different locations in Kollevåg bay and at one reference location. Sediments and cod samples (bile and liver) were analyzed for polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), brominated flame retardants (BFRs), per-and polyfluoroalkyl substances (PFASs) and polycyclic aromatic hydrocarbon (PAH) metabolites, revealing a contamination gradient at the four stations. Furthermore, hepatosomatic index (HSI) and Fulton's condition factor (CF) were significantly lower in cod caged closest to the disposal site. Levels and activities of biomarker proteins, such as vitellogenin (Vtg), metallothionein (Mt), and biotransformation and oxidative stress enzymes, including cytochrome P450 1a and 3a (Cyp1a, Cyp3a), glutathione s-transferase (Gst) and catalase (Cat), were quantified in blood plasma and liver tissue. Hepatic Cat and Gst activities were significantly reduced in cod caged at the innermost stations in Kollevåg, indicating modulation of oxidative stress responses. However, these results contrasted with reduced hepatic lipid peroxidation. Significant increases in transcript levels were observed for genes involved in lipid metabolism (fasn and acly) in cod liver, while transcript levels of ovarian steroidogenic enzyme genes such as p450scc, cyp19, 3ß-hsd and 20ß-hsd showed significant station-dependent increases. Cyp1a and Vtg protein levels were however not significantly altered in cod caged in Kollevåg. Plasma levels of estradiol (E2) and testosterone (T) were determined by enzyme immunoassay (EIA) and showed elevated E2 levels, but only at the innermost station. We conclude that the bay of Kollevåg did not fullfill adequate environmental condition based on environmental quality standards (EQSs) for chemicals in coastal waters. Following a six weeks caging period, environmental contaminants accumulated in cod tissues and effects were observed on biomarker responses, especially those involved in reproductive processes in cod ovary.


Assuntos
Gadus morhua , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Feminino , Gadus morhua/fisiologia , Noruega , Distribuição Tecidual , Poluentes Químicos da Água/farmacocinética
10.
Environ Sci Technol ; 52(22): 13535-13542, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30338992

RESUMO

To examine whether natural stressors like predation risk affect responses to anthropogenic contaminants, we exposed nauplii of the copepod Tigriopus brevicornis to chemical cues from fish (kairomones) and copper (Cu). We tested effects of these treatments, singly and combined, on copepod age and size at maturity, and development stage sensitivity, while controlling for effects of genetic heterogeneity (clutch identity). Predation risk, Cu and clutch identity interacted in their effect on development time. Predation risk alone had minor effects, but potentiated Cu toxicity in the combined treatment by doubling the delay in age at maturity, as compared to Cu exposure alone. This potentiating effect on developmental delay appeared already at the first copepodite stage. The specific strength of response varied among nauplii from different females' clutches. There were no differences in copepod size at maturity among treatments. We did, however, find an interaction between the effect of Cu and clutch identity on copepod growth. Our results demonstrate the importance of ecological interactions for potentiating the toxicity of environmental contaminants. We also demonstrate the need to consider genetic heterogeneity in ecotoxicology. Natural variation in stressor responses has implications for the interpretation of results from toxicological studies using single-clone or inbred culture populations.


Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Cobre , Feminino , Metais , Comportamento Predatório
11.
Environ Pollut ; 243(Pt B): 1217-1225, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30267918

RESUMO

The exponential production and use of plastics has generated increasing environmental release over the past decades, and microplastics (MPs) have been reported across all the oceans. Field studies have documented the occurrence of MPs in several species, but important knowledge gaps still remain. In the present study, we characterized the distribution of MPs in ten sediment-dwelling and epibenthic species representative of different habitat, feeding modes and trophic levels within the inner Oslofjord (Oslo, Norway), an area subjected to moderate anthropogenic pressures. Analysed species included fish, bivalves, echinoderms, crustaceans and polychaetes. MPs were present in all the species with a frequency up to 65% of positive individuals for some species. In most cases, 1 or 2 MPs were found per individual, but some organisms contained up to 7 particles. A total of 8 polymer typologies were identified, with PE and PP being the most common according to our extraction protocol. MP sizes ranged from 41 µm to lines as long as 9 mm. Our results indicate that occurrence of MPs in analysed biota is not influenced by organism habitat or trophic level, while characteristics and typology of polymers might be significantly affected by feeding mode of organisms.


Assuntos
Organismos Aquáticos/química , Ecossistema , Monitoramento Ambiental , Plásticos/análise , Poluentes Químicos da Água/análise , Animais , Bivalves , Peixes , Cadeia Alimentar , Noruega , Polímeros , Alimentos Marinhos/análise
12.
Environ Pollut ; 236: 652-660, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29433106

RESUMO

Most microplastics are expected to sink and end up in marine sediments. However, very little is known concerning their potential impact on sediment-dwelling organisms. We studied the long-term impact of microplastic exposure on two sediment-dwelling bivalve species. Ennucula tenuis and Abra nitida were exposed to polyethylene microparticles at three concentrations (1; 10 and 25 mg/kg of sediment) for four weeks. Three size classes (4-6; 20-25 and 125-500 µm) were used to study the influence of size on microplastic ecotoxicity. Microplastic exposure did not affect survival, condition index or burrowing behaviour in either bivalve species. However, significant changes in energy reserves were observed. No changes were observed in protein, carbohydrate or lipid contents in E. tenuis, with the exception of a decrease in lipid content for one condition. However, total energy decreased in a dose-dependent manner for bivalves exposed to the largest particles. To the contrary, no significant changes in total energy were observed for A. nitida, although a significant decrease of protein content was observed for individuals exposed to the largest particles, at all concentrations. Concentration and particle size significantly influenced microplastic impacts on bivalves, the largest particles and higher concentrations leading to more severe effects. Several hypotheses are presented to explain the observed modulation of energy reserves, including the influence of microplastic size and concentration. Our results suggest that long-term exposure to microplastics at environmentally relevant concentrations can impact marine benthic biota.


Assuntos
Bivalves/fisiologia , Monitoramento Ambiental , Plásticos/análise , Poluentes Químicos da Água/análise , Animais , Biota , Bivalves/metabolismo , Exposição Ambiental , Plásticos/metabolismo , Poluentes Químicos da Água/metabolismo
13.
Environ Toxicol Chem ; 37(4): 1084-1091, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29120089

RESUMO

Environmental contaminants are found throughout Arctic marine ecosystems, and their presence in seabirds has been associated with toxicological responses. However, there are few studies of genotoxicity in Arctic avian wildlife. The purpose of the present study was to quantify deoxyribonucleic acid (DNA) damage in lymphocytes of selected seabird species and to examine whether accumulation of organohalogen contaminants (ΣOHCs) affects DNA damage. Blood was sampled from common eider (Somateria mollissima), black guillemot (Cepphus grylle), black-legged kittiwake (Rissa tridactyla), glaucous gull (Larus hyperboreus), arctic skua (Stercorarius parasiticus), and great skua (Stercorarius skua) in Kongsfjorden, Svalbard (Norway). Contaminant concentrations found in the 6 species differed, presumably because of foraging ecology and biomagnification. Despite large differences in contaminant concentrations, ranging from ΣOHCs 3.3 ng/g wet weight in the common eider to ΣOHCs 895 ng/g wet weight in the great skua, there was no strong difference among the species in baseline DNA damage or sensitivity to a genotoxic stressor (hydrogen peroxide). Baseline levels of DNA damage were low, with median values ranging from 1.7% in the common eider to 8.6% in the great skua. There were no associations between DNA damage and contaminants in the investigated species, suggesting that contaminant concentrations in Kongsfjorden are too low to evoke genotoxic effects, or possibly that lymphocytes are resistant to strand breakage. Clearly, genotoxicity is a topic for future studies of Arctic seabirds. Environ Toxicol Chem 2018;37:1084-1091. © 2017 SETAC.


Assuntos
Charadriiformes/metabolismo , Dano ao DNA , Poluentes Ambientais/toxicidade , Hidrocarbonetos Halogenados/toxicidade , Mutagênicos/toxicidade , Animais , Regiões Árticas , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Monitoramento Ambiental , Lipídeos/análise , Análise de Componente Principal
14.
J Toxicol Environ Health A ; 80(16-18): 895-906, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28837403

RESUMO

With increasing oil and gas activities and transport in the Arctic, there is a need to understand how operational or accidental releases of substances affect marine organisms from a pristine environment. The aim of the current study was to describe and compare the responses of two marine fish species, Atlantic cod (Gadus morhua) and turbot (Scophthalmus maximus), following exposure to three levels (low, medium, high) of the water-soluble fraction of a North Sea crude oil for 16 days. The exposure system simulated environmental exposure by allowing clean seawater to percolate through gravel covered in weathered oil before being introduced to aquaria. Both polycyclic aromatic hydrocarbon (PAH) metabolite bile concentrations and cytochrome P4501A (CYP1A) levels and activity increased markedly in comparison with controls in both species, but there were no significant differences between the three exposures. Turbot possessed 4-5-fold higher concentrations of two PAH bile metabolites compared to Atlantic cod by day 8. In contrast, hepatic CYP1A activity in cod was consistently 2-6-fold higher than in turbot with increasing differences over the experimental period. Baseline DNA strand breaks in lymphocytes and kidney cells were low in both species, but was elevated for all treatments by day two. There were no marked indications of the treatments affecting immune functions in either species. This investigation demonstrated that there may be significant differences in responses between species receiving identical exposures and that DNA strand breaks in lymphocytes and kidney cells are sensitive to confinement stress. Data also indicate that some species, such as turbot, may adapt to treatments within days and weeks.


Assuntos
Exposição Ambiental/efeitos adversos , Linguados/metabolismo , Gadus morhua/metabolismo , Petróleo/toxicidade , Água do Mar/química , Poluentes Químicos da Água/toxicidade , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Bile/química , Contaminação de Alimentos/análise , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mar do Norte , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Explosão Respiratória/efeitos dos fármacos , Alimentos Marinhos/análise
15.
J Toxicol Environ Health A ; 80(16-18): 807-819, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28837417

RESUMO

Anthropogenic pollutants produce oxidative stress in marine organisms, directly or following generation of reactive oxygen species (ROS), potentially resulting in increased accumulation of DNA strand breaks quantified. The aim of this study is to quantify baseline levels of DNA strand breaks in marine species from four phyla and to assess relative sensitivity to oxidative stress as well as ability to recover. DNA strand breaks were determined using a formamidopyrimidine DNA glycosylase (Fpg)-amended comet assay in circulating cells from blue mussel (Mytilus edulis), shore crab (Carcinus maenas), sea star (Asterias rubens), and vase tunicate (Ciona intestinalis). Lymphocytes from Atlantic cod (Gadus morhua) were used as a reference. In addition to immediate analysis, cells from all species were exposed ex vivo to two concentrations of hydrogen peroxide (H2O2) at 25 or 250 µM prior to assay. Mean baseline DNA strand breaks were highest for cells from sea star (34%) followed by crab (25%), mussel (22%), tunicate (17%), and cod (14%). Circulating cells from invertebrates were markedly more sensitive to oxidative stress compared to cod lymphocytes. DNA strand breaks exceeded 80% for sea star, crab, and mussel cells following exposure to the lowest H2O2 concentration. There was no recovery for cells from any species following 1 hr in buffer. This study provides an in-depth analysis of DNA integrity for ecologically important species representing 4 phyla. Data indicate that circulating cells from invertebrates are more sensitive to oxidative stress than cells from fish as evidenced by DNA strand breaks. Future studies need to address the extent to which DNA strand breaks may exert consequences for body maintenance costs in marine invertebrates.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/genética , Asterias/efeitos dos fármacos , Asterias/genética , Braquiúros/efeitos dos fármacos , Braquiúros/genética , Ciona intestinalis/efeitos dos fármacos , Ciona intestinalis/genética , Ensaio Cometa , DNA-Formamidopirimidina Glicosilase/metabolismo , Determinação de Ponto Final , Peixes/genética , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Mytilus edulis/efeitos dos fármacos , Mytilus edulis/genética , Especificidade da Espécie
17.
Mar Environ Res ; 124: 11-20, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26604023

RESUMO

Many maritime countries in Europe have implemented marine environmental monitoring programmes which include the measurement of chemical contaminants and related biological effects. How best to integrate data obtained in these two types of monitoring into meaningful assessments has been the subject of recent efforts by the International Council for Exploration of the Sea (ICES) Expert Groups. Work within these groups has concentrated on defining a core set of chemical and biological endpoints that can be used across maritime areas, defining confounding factors, supporting parameters and protocols for measurement. The framework comprised markers for concentrations of, exposure to and effects from, contaminants. Most importantly, assessment criteria for biological effect measurements have been set and the framework suggests how these measurements can be used in an integrated manner alongside contaminant measurements in biota, sediments and potentially water. Output from this process resulted in OSPAR Commission (www.ospar.org) guidelines that were adopted in 2012 on a trial basis for a period of 3 years. The developed assessment framework can furthermore provide a suitable approach for the assessment of Good Environmental Status (GES) for Descriptor 8 of the European Union (EU) Marine Strategy Framework Directive (MSFD).


Assuntos
Monitoramento Ambiental/métodos , Política Ambiental , Substâncias Perigosas/análise , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental/normas , União Europeia
18.
Mar Environ Res ; 124: 2-10, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26612182

RESUMO

An international workshop on marine integrated contaminant monitoring (ICON) was organised to test a framework on integrated environmental assessment and simultaneously assess the status of selected European marine areas. Biota and sediment were sampled in selected estuarine, inshore and offshore locations encompassing marine habitats from Iceland to the Spanish Mediterranean. The outcome of the ICON project is reported in this special issue as method-oriented papers addressing chemical analyses, PAH metabolites, oxidative stress, biotransformation, lysosomal membrane stability, genotoxicity, disease in fish, and sediment assessment, as well as papers assessing specific areas. This paper provides a background and introduction to the ICON project, by reviewing how effects of contaminants on marine organisms can be monitored and by describing strategies that have been employed to monitor and assess such effects. Through the ICON project we have demonstrated the use of an integrating framework and gleaned more knowledge than ever before in any single field campaign about the impacts contaminants may have in European marine areas.


Assuntos
Monitoramento Ambiental/métodos , Política Ambiental , Poluição Química da Água/estatística & dados numéricos , Animais , Organismos Aquáticos , Ecossistema , Poluição Química da Água/análise
19.
Mar Environ Res ; 124: 70-80, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26654299

RESUMO

This study investigated whether general stress biomarkers in mussels can be applied as common first-tier biomarkers in regional biomonitoring programmes in the North Sea (including Iceland) and western Mediterranean Sea. Stress on Stress (SoS) and lysosomal membrane stability (LMS) biomarkers were analysed in resident mussels (Mytilus sp.) from 8 coastal sites and in transplanted mussels (Mytilus galloprovincialis) from two Spanish Mediterranean coastal sites. The assessment of results, as input to pollution monitoring strategies, was performed jointly for LMS and SoS data from the two regions. Contaminant body burden of the mussels was compared with biomarker results. The results demonstrated that these two general and non-expensive stress biomarkers in mussel can be applied throughout European waters, providing a cost-effective and harmonised approach to screen contaminant-related biological effects within the framework of wide-scale pollution biomonitoring programmes, such as that proposed by the European Union, i.e. the Marine Strategy Framework Directive.


Assuntos
Biomarcadores/metabolismo , Monitoramento Ambiental/métodos , Mytilus/fisiologia , Estresse Fisiológico/fisiologia , Animais , Europa (Continente) , Islândia , Mar do Norte , Poluentes Químicos da Água/metabolismo
20.
Mar Environ Res ; 124: 54-60, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26806613

RESUMO

Dab (Limanda limanda) and haddock (Melanogrammus aeglefinus) were collected from coastal and offshore locations in the Baltic (dab only), North Sea (haddock from one location only) and Iceland. Blood was analysed for DNA strand breaks using the comet assay and liver samples for DNA adduct concentrations. DNA strand breaks were at background levels in dab from the two Iceland locations and from the Dogger Bank. The highest levels were observed in dab from the Firth of Forth, Ekofisk and the German Bight. Hepatic DNA adducts in dab were highest at Ekofisk, in the Baltic and Dogger Bank, below detection limit in dab from Iceland and low in dab from the Firth of Forth and German Bight. There was large variation in DNA strand breaks between locations and individuals for haddock, particularly from Iceland. Adduct concentrations were elevated in haddock from both Iceland and the Firth of Forth. A general linear model (GLM) suggested that, in addition to location, the size of dab and its general condition contributed to explaining the observed variability in DNA strand breaks. A GLM for adducts in dab similarly allocated most of the variability to location, but with a possible contribution from CYP1A activity. There were no apparent differences between male and female dab for any of the methods. There was no obvious relationship between strand breaks and adducts in the same fish although dab from Ekofisk and Iceland had respectively high and low responses using both methods. The results from this large-scale study showed pollution-related genotoxicity for dab, that fish blood samples can be conserved prior to comet analyses and that there are clear species differences in genotoxic responses even when collected at the same location.


Assuntos
Dano ao DNA , Monitoramento Ambiental , Linguado/fisiologia , Gadiformes/fisiologia , Animais , Ensaio Cometa , Islândia , Fígado , Mar do Norte , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...